non-abelian, soluble, monomial
Aliases: C33:7SD16, C6.17S3wrC2, D6:S3.S3, C33:4C8:3C2, C33:5Q8:2C2, C3:Dic3.12D6, (C32xC6).11D4, C32:4(D4.S3), C2.6(C33:D4), C3:2(C32:2SD16), (C3xD6:S3).1C2, (C3xC6).17(C3:D4), (C3xC3:Dic3).9C22, SmallGroup(432,584)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3xC3:Dic3 — C33:7SD16 |
C33 — C32xC6 — C3xC3:Dic3 — C33:7SD16 |
Generators and relations for C33:7SD16
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, dad-1=b-1, eae=a-1, bc=cb, dbd-1=a, be=eb, dcd-1=c-1, ce=ec, ede=d3 >
Subgroups: 508 in 84 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, Q8, C32, C32, Dic3, C12, D6, C2xC6, SD16, C3xS3, C3xC6, C3xC6, C3:C8, Dic6, C3:D4, C3xD4, C33, C3xDic3, C3:Dic3, C3:Dic3, S3xC6, C62, D4.S3, S3xC32, C32xC6, C32:2C8, D6:S3, C32:2Q8, C3xC3:D4, C3xC3:Dic3, C3xC3:Dic3, S3xC3xC6, C32:2SD16, C33:4C8, C3xD6:S3, C33:5Q8, C33:7SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3:D4, D4.S3, S3wrC2, C32:2SD16, C33:D4, C33:7SD16
Character table of C33:7SD16
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 3E | 3F | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 8A | 8B | 12A | 12B | 12C | |
size | 1 | 1 | 12 | 2 | 4 | 4 | 4 | 4 | 8 | 18 | 36 | 2 | 4 | 4 | 4 | 4 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 54 | 54 | 36 | 36 | 36 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | 2 | 0 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | -1 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | -2 | -1 | -1 | 2 | -1 | 2 | -1 | 2 | 0 | -1 | -1 | 2 | 2 | -1 | -1 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | -1 | 0 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | 2 | -1 | -2 | 0 | -1 | -1 | 2 | 2 | -1 | -1 | -√-3 | 0 | √-3 | √-3 | 0 | √-3 | -√-3 | -√-3 | 0 | 0 | 0 | 1 | 0 | complex lifted from C3:D4 |
ρ9 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | 2 | -1 | -2 | 0 | -1 | -1 | 2 | 2 | -1 | -1 | √-3 | 0 | -√-3 | -√-3 | 0 | -√-3 | √-3 | √-3 | 0 | 0 | 0 | 1 | 0 | complex lifted from C3:D4 |
ρ10 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | complex lifted from SD16 |
ρ11 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | complex lifted from SD16 |
ρ12 | 4 | 4 | 2 | 4 | 1 | -2 | 1 | 1 | -2 | 0 | 0 | 4 | 1 | -2 | 1 | 1 | -2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3wrC2 |
ρ13 | 4 | 4 | 0 | 4 | -2 | 1 | -2 | -2 | 1 | 0 | -2 | 4 | -2 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | orthogonal lifted from S3wrC2 |
ρ14 | 4 | 4 | 0 | 4 | -2 | 1 | -2 | -2 | 1 | 0 | 2 | 4 | -2 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | -1 | orthogonal lifted from S3wrC2 |
ρ15 | 4 | 4 | -2 | 4 | 1 | -2 | 1 | 1 | -2 | 0 | 0 | 4 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | 1 | -2 | 1 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3wrC2 |
ρ16 | 4 | -4 | 0 | -2 | -2 | 4 | -2 | 4 | -2 | 0 | 0 | 2 | 2 | -4 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.S3, Schur index 2 |
ρ17 | 4 | -4 | 0 | 4 | -2 | 1 | -2 | -2 | 1 | 0 | 0 | -4 | 2 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√3 | 0 | √3 | symplectic lifted from C32:2SD16, Schur index 2 |
ρ18 | 4 | -4 | 0 | 4 | -2 | 1 | -2 | -2 | 1 | 0 | 0 | -4 | 2 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √3 | 0 | -√3 | symplectic lifted from C32:2SD16, Schur index 2 |
ρ19 | 4 | -4 | 0 | 4 | 1 | -2 | 1 | 1 | -2 | 0 | 0 | -4 | -1 | 2 | -1 | -1 | 2 | -√-3 | -√-3 | -√-3 | 0 | √-3 | √-3 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32:2SD16 |
ρ20 | 4 | 4 | -2 | -2 | -1-3√-3/2 | -2 | -1+3√-3/2 | 1 | 1 | 0 | 0 | -2 | -1+3√-3/2 | -2 | 1 | -1-3√-3/2 | 1 | ζ3 | 1 | ζ32 | 1+√-3 | 1 | ζ32 | ζ3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | complex lifted from C33:D4 |
ρ21 | 4 | -4 | 0 | -2 | -1-3√-3/2 | -2 | -1+3√-3/2 | 1 | 1 | 0 | 0 | 2 | 1-3√-3/2 | 2 | -1 | 1+3√-3/2 | -1 | 3+√-3/2 | -√-3 | -3+√-3/2 | 0 | √-3 | 3-√-3/2 | -3-√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | 4 | 2 | -2 | -1-3√-3/2 | -2 | -1+3√-3/2 | 1 | 1 | 0 | 0 | -2 | -1+3√-3/2 | -2 | 1 | -1-3√-3/2 | 1 | ζ65 | -1 | ζ6 | -1-√-3 | -1 | ζ6 | ζ65 | -1+√-3 | 0 | 0 | 0 | 0 | 0 | complex lifted from C33:D4 |
ρ23 | 4 | -4 | 0 | -2 | -1-3√-3/2 | -2 | -1+3√-3/2 | 1 | 1 | 0 | 0 | 2 | 1-3√-3/2 | 2 | -1 | 1+3√-3/2 | -1 | -3-√-3/2 | √-3 | 3-√-3/2 | 0 | -√-3 | -3+√-3/2 | 3+√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 4 | -4 | 0 | -2 | -1+3√-3/2 | -2 | -1-3√-3/2 | 1 | 1 | 0 | 0 | 2 | 1+3√-3/2 | 2 | -1 | 1-3√-3/2 | -1 | -3+√-3/2 | -√-3 | 3+√-3/2 | 0 | √-3 | -3-√-3/2 | 3-√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ25 | 4 | 4 | -2 | -2 | -1+3√-3/2 | -2 | -1-3√-3/2 | 1 | 1 | 0 | 0 | -2 | -1-3√-3/2 | -2 | 1 | -1+3√-3/2 | 1 | ζ32 | 1 | ζ3 | 1-√-3 | 1 | ζ3 | ζ32 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | complex lifted from C33:D4 |
ρ26 | 4 | -4 | 0 | -2 | -1+3√-3/2 | -2 | -1-3√-3/2 | 1 | 1 | 0 | 0 | 2 | 1+3√-3/2 | 2 | -1 | 1-3√-3/2 | -1 | 3-√-3/2 | √-3 | -3-√-3/2 | 0 | -√-3 | 3+√-3/2 | -3+√-3/2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 4 | -4 | 0 | 4 | 1 | -2 | 1 | 1 | -2 | 0 | 0 | -4 | -1 | 2 | -1 | -1 | 2 | √-3 | √-3 | √-3 | 0 | -√-3 | -√-3 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32:2SD16 |
ρ28 | 4 | 4 | 2 | -2 | -1+3√-3/2 | -2 | -1-3√-3/2 | 1 | 1 | 0 | 0 | -2 | -1-3√-3/2 | -2 | 1 | -1+3√-3/2 | 1 | ζ6 | -1 | ζ65 | -1+√-3 | -1 | ζ65 | ζ6 | -1-√-3 | 0 | 0 | 0 | 0 | 0 | complex lifted from C33:D4 |
ρ29 | 8 | 8 | 0 | -4 | 2 | 2 | 2 | -4 | -1 | 0 | 0 | -4 | 2 | 2 | -4 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C33:D4 |
ρ30 | 8 | -8 | 0 | -4 | 2 | 2 | 2 | -4 | -1 | 0 | 0 | 4 | -2 | -2 | 4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(2 23 9)(4 11 17)(6 19 13)(8 15 21)
(1 16 22)(3 24 10)(5 12 18)(7 20 14)
(1 22 16)(2 9 23)(3 24 10)(4 11 17)(5 18 12)(6 13 19)(7 20 14)(8 15 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 4)(3 7)(6 8)(9 11)(10 14)(13 15)(17 23)(19 21)(20 24)
G:=sub<Sym(24)| (2,23,9)(4,11,17)(6,19,13)(8,15,21), (1,16,22)(3,24,10)(5,12,18)(7,20,14), (1,22,16)(2,9,23)(3,24,10)(4,11,17)(5,18,12)(6,13,19)(7,20,14)(8,15,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(17,23)(19,21)(20,24)>;
G:=Group( (2,23,9)(4,11,17)(6,19,13)(8,15,21), (1,16,22)(3,24,10)(5,12,18)(7,20,14), (1,22,16)(2,9,23)(3,24,10)(4,11,17)(5,18,12)(6,13,19)(7,20,14)(8,15,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,4)(3,7)(6,8)(9,11)(10,14)(13,15)(17,23)(19,21)(20,24) );
G=PermutationGroup([[(2,23,9),(4,11,17),(6,19,13),(8,15,21)], [(1,16,22),(3,24,10),(5,12,18),(7,20,14)], [(1,22,16),(2,9,23),(3,24,10),(4,11,17),(5,18,12),(6,13,19),(7,20,14),(8,15,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,4),(3,7),(6,8),(9,11),(10,14),(13,15),(17,23),(19,21),(20,24)]])
G:=TransitiveGroup(24,1291);
Matrix representation of C33:7SD16 ►in GL4(F7) generated by
1 | 0 | 4 | 0 |
5 | 6 | 1 | 4 |
4 | 4 | 0 | 6 |
0 | 0 | 0 | 1 |
5 | 3 | 5 | 3 |
3 | 5 | 2 | 3 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 |
3 | 6 | 3 | 2 |
6 | 3 | 4 | 2 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 4 |
0 | 6 | 3 | 0 |
0 | 2 | 4 | 5 |
3 | 4 | 2 | 5 |
2 | 2 | 6 | 3 |
1 | 0 | 0 | 5 |
5 | 6 | 0 | 2 |
4 | 4 | 1 | 6 |
0 | 0 | 0 | 6 |
G:=sub<GL(4,GF(7))| [1,5,4,0,0,6,4,0,4,1,0,0,0,4,6,1],[5,3,0,0,3,5,0,0,5,2,1,0,3,3,0,4],[3,6,0,0,6,3,0,0,3,4,2,0,2,2,0,4],[0,0,3,2,6,2,4,2,3,4,2,6,0,5,5,3],[1,5,4,0,0,6,4,0,0,0,1,0,5,2,6,6] >;
C33:7SD16 in GAP, Magma, Sage, TeX
C_3^3\rtimes_7{\rm SD}_{16}
% in TeX
G:=Group("C3^3:7SD16");
// GroupNames label
G:=SmallGroup(432,584);
// by ID
G=gap.SmallGroup(432,584);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,56,85,254,135,58,1684,571,298,677,1027,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=b^-1,e*a*e=a^-1,b*c=c*b,d*b*d^-1=a,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^3>;
// generators/relations
Export